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\j ABSTRACT

Chronic needs for higher performance in present and future military and
commercial systems mandate improvements in material properties. High stiffness,
high strength, and low density are among the material properties necessary to
achieve future system performance goals. Such requirements can no longer be met
using conventional metal alloys. Magnesium matrix composites are among the can-
didates to fulfill the aforementioned requirements. Ceramic fiber, particulate,
and whisker reinforced magnesium composites have demonstrated significant improve-
ments in specific stiffness and specific strength over the monclithic matrix
alloys. Magnesium matrix composites can also compete with high strength aluminum
alloys and other metal matrix composites-for high performance and weight critical
applications. ever, magnesium composites are still relatively expensive and
are still in the devétepmental stage. Six magnesium composites were studied:
cast 55v/o continuous AlyDy fiber/ZE41A Mg; cast 40v/o continuous graphite fiber/
ZE41A Mg; cast 40v/o continuous graphite fiber/AZ91C Mg; PM extruded 20v/o B4C
particulate/AZ61A Mg; PM extruded 20v/o SiC particulate/ZK60A Mg; and PM extruded
20v/o a-8iC whisker/ZK60A Mg, cast 55v/o continuous Al.04 fiber/ZE41A Mg. Both
tensile and fracture toughness results on each of the composite systems will be
presented. The nature of the reinforcement-matrix interfacial bond was revealed
througn detailed transmission electron microscopy. The effects of the interface
as related to the tensile and toughness properties will be discussed.

. . ‘>/
EEZZEEI;B For v ‘4-f4;‘_,;;’
TyeIs  GRasl *
DTIC TAB _
Unannounced o
Justificatlo

By
pistribution/

Availability Codes
[avall and/or
Sspecial

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (?en Deate Enterey;




STRUCTURES AND PROPERTIES OF MAGNESIUM BASE COMPOSITES

Ernest S. C. Chin

U.S. Army Materials Technology Laboratory
Materials Producibility Branch
Materials Exploitation Division

watertown, MA (02172-0001

INTRODUCTION

Magnesium is recognized as an engineering alloy
for a wide range of weight sensitive applications.
Higher strength and better corrosion resistance
magnesium alloys are constantly being developed.
The incorporation of hard phases as reinforcements
to a magnesium matrix can result in enchanced
specific strength and specific modulus as compared
to the monolithic materials. Consequently,
magnesium composites can compete with other
monolithic engineering alloys such as aluminum and
steel in weight critical applications.

Metal matrix composites have been the subject
of intense research and development within the past
ten years. However, to a relatively conservative
engineering community, any navel material must first
prove itseif to be relfable, reproducible, and
economical before being accepted. This requires the
availability of a comprehensive material property
data base compiled through detailed characterization
of state-of-the-art materials,

Understanding the interdependent factors that
correlate mechanical properties with microstructures
and processing is one of the keys to material
optimization. This is especially true for metal
matrix composites. Each component in the composite
microstructure plays signifigant role in its
performance. The effects of reinforcement
distribution, size, and interfacial reaction zone on
composite strength and toughness are some of the
many issues being investigatied.

There are currently two types of magnesium
composites: continuous fiber reinforceed and
particulate/whisker reinforced magnesium. In
continuous fiber reinforced composites, the matrix
serves as a binder for the load bearing filaments.
Properties of continuous fiber reinforced composites
rely on the filament properties and the capability
if the fiber/matrix interface to transfer load.
Theoretical properties of continuous fiber
reinforced composites can be calculated by the
rule-of-mixtures[1]. In particulate and whisker
reinforced composftes, the primary strengthening
mechanism is retardation of dislocation movements by
the fine dispersion of reinforcement. Numerous
theoretical models relating dispersion
mean-free-path, interparticle spacing, and other
factors with mechanical properties have been
proposed[2].

Six composites were studied for this paper:

1. 55 volume percent{v/0) undirectional
continuous alumina fiber/ ZE41A
magnesium(oC-Al,0,/ZE41A);

2. 40 v/o unindireat onal continuous
P-55 graphite fiber/ZE41A magnesium
(Gr/ZE41A);

3. 40°v/o unindirectional P-55 graphite
fiber/AZ91C magnesium (Gr/AZ91C);

4. 20 v/o boron carbide particulate
/AZ61A magnesium(B,C/AZ61A);

5. 20 v/o silicon carside particulate
/IK60A magnesium(SiC_/ZK60R);

6. 20 v/o silicon carbille whisker/ZK60A
magnesium(Sij/ZKSOA).

The oL-AlZO /ZE41A was processed by method of
moliten liquid matal infiltration [3]. All the Gr/Mg
composites in this study were consolidated by
investment casting [4]. The graphite fibers were
pretreated with an oxide coating [5] through
oxidation of an organometallic solution on the
filament surfaces[5] prior to casting to enhance
wetting and interfacfal bonding,

Partculate and whisker reinforced magnesium
composites were processed through powder
metallurgy(PM) techniques. The particulates or
whiskers were blended with the matrix powder,
canned, degassed, hot pressed, and extruded[6]. The
blending of metal powders and reinforcements was a
key process where segregations of the hard phases in
the composite microstructure must be avoided. The
B,C/IK60A studied was a 3" diameter extrusion
sibjected to a 4:1 cross section reduction. Both
the SiC_/ZK60A and SiC_/ZK60A were 2" diameter 13:1
extrusiBns. Further hfat treatments were performed
to strengthen the matrix alloy. The SiC_/ZK60A, and
SiC_/ZK60A studied were in the T6, solufion heat
tredted and artivicially aged, condition.

The B,C/AZ61 was studied in the as extruded (F)
condiéion.

MATERIAL CHARACTERIZATION TECHNIQUES

In this study, tensile properties, toughness
behavior, fracture characteristics, and
microstructures were determined for each individual
composite. The relationship between microstructure
and properties were explored through observations,
Longitudinal and transverse tensile properties were
determined with tapered "dog bone" specimens
sectioned from 1/2" thick X-A1,0,/ZE41A, 1/4" thick




Gr/1Z41A, and 1/4" thick Gr/AZ91C plates. Round
button head and threaded specimens were tested in
the radial and extrusion direction for B,C/AZ61A,
SiC_/IK60A, and SiC_/IK60A. Charpy V-nofch
spelimens were sec¥ioned from 1/2" thick
«-A),0,/2E41A, Gr/ZE41A, and Gr/AZ91IC plates.

Simi?a ly, Charpy V-notch specimens were also
sectioned from the 3"diameter B4C/ZK60A, 2" diameter
SiC_/IK60A, and 2* diameter SiC _/ZK60A extruded
rodd. Relative toughness of eafh composite was
established through comparison of K,. values
obtained from slow bend testing of {“e Charpy
specimens according to ASTM E399 test method without
precracking, Fracture morphologies of each of the
composites were determined through detailed scanning
electron microscope(SEM) observations.
Microstructural and interfacial characterizations
were performed with metailography and transmission
electron microscope(TEM) techniques.

RESULTS
MICROSTRUCTURES
Reinforcement Size and Distribution

Theo(~Al,04/ZE41A fibers are 20 um diameter
polycrystalliae filaments[7], whereas the graphite
P-55's are 10 um diameter pitch base carbon
fibers[8]. Metallography and SEM study of the
polished microstructure showed relatively uniform
fiber distribution in both the cz-Alzo /IE4LA,
Gr/AZ91C, and Gr/ZE41A composites(see’Figure 1).
Matrix rich zones separating laminate layers were
observed in 1/4" thick plates and were prevalent in
1/2* Gr/Mg plates.,

oa al
Figure 1. Optical Micrograph of a Typical
Transverse Cross Section in

w-Al,0./ZE41A(Left)
and €rJAZ91C(Right).(1000X)

|

The whisker and particulate reinforcements
varied in size and geometry throughout each of the
dispersion strengthened composites. The B,C
particulates are polygonal in nature with 3 mean
diameter of 10 um(see Figure 2). The SiC
particulates were fine spherical powders less than 5
Mm in diameter(see Figure 3), The SiC whiskers were
single crystals and had a mean diameter of 0.6 um
and an aspect ratio of 10:1 (see Figure 4). All the
whiskers were aligned in the extrusion direction.
The 8,C, SiC , and SiC_ reinforced Mg composites
showed pocke¥s of matr®x rich zone in the transverse
direction(see Figure 3). Larger unreinforced matrix
rich zones were found in SiC_/ZK60A than in
SiC_/IX60A. Sporadic clustefs of reinforcement were
foulld in all of the composites.

Figure 2. SEM Micrograph of a Typical Polished
Transverse Cross Section in 84C/A261A.

Figure 3. Optical Micrograph of a Typical
Transverse Cross Sectfon of
Sicp/ZK60A.(1000x)




Interface

Previous studies on 4—Al 0,/ZE41A identified a
fine grained spinel(MgAl,0 6h§se seperating the
fiber surface and the maanés1um matrix [9] (see
Figure 5). In Gr/ZE41A composite, TEM had revealed
large silicon and rare earth rich oxide particles at
the interface (see Figure 6), whereas in Gr/AZ91C, a
thin layer of amorphous silicon oxide and a layer of
magnesium oxide defined the interfaces (see Figure
7). The silicon oxide layer remaining between the
fiber surface and the reacted magnesium oxide layer
was part of the original coating deposited by
oxidation of an organometallic solution. The

C/AZ61A particulate/matrix interface showed a fine
t%1n reaction film(see Figure 8). In both the SiC
and SiC_ reinforced ZK60A, no observable 1nterfac181
reactiol zone was detected (see figure 8 & 9).

Figure 4, Qptical Micrograph of SiC_/ZK60A
Longitudinal Cross Sectiolt.(1000X)

Figure S. TEM Micrograph of Transverse Cross
Section of w;Ala Q/ZE41A
0

Interface. (38,0

Figure 6., TEM Micrograph of Transverse Cross
Section of Gr/ZE41A Interface.(330,000X)

Figure 7. TEM Micrograph of Transverse (Cross
Section of Gr/AZ91C Interface.(100,000X)

Figure 8, TEM Micrograph of Transverse Cross
Section of B,C/AZ61A(Left) and
SiC /zxeoA(R?gm Interface. (330,000X)




Figure 9. TEM Micrograph of Transverse Cross
Section of SiC_ /ZK60A interface.

(100,000 /Left"330,000X/Right)

Matrix

Except for Gr/AZ91C where only dislocations
were observed, substantial amount of matrix
precipitation was found in all of the composites.
The primary precipitation was large spherical MgZn
and rod like MgZn' (see Figure 10). The MgZn
precipitates were typically found at twin and grain
boundaries whereas the MgZn' resided within each
grain in a preferred crentation. The major
difference between each composite were the size and
distribution of these precipitates. The as-cast
o=A1,0,/2E41A had greater quanity and finer MgZn' in
the Matrix than the Gr/ZE4IA. The B,C/AZ61A matrix
was densely populated with matrix ané grain boundary
Mg-Al-In precipitates.

Figure 10. TEM Micrograph of MgZn' and MgZn
Precipitation in SiCp/ZKGOA.(SQ.OOOX)

MECHANICAL PROPERTIES

A summary of the tensile and toughness
properties of each of the composites is found in
Table [, II, and [II. The tensile moduli of the
continuously reinforced composftes are superior to
those of the dispersion reinforced composites. As
expected in continuous reinforced composites, there
is a significant drop in tensile and toughness
properties from the longitudinal directfon to the
transverse direction. A marked decrease in
properties from the 1/4" plate to the 1/2" plate in
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the Gr/AZ91C is also noted. Although
¥-Al1,0,/2E41A has a higher density than Gr/AZ91C,
it h§s3letter overall tensile and toughness
properties in the longitudinal and transverse
directions. In dispersion hardened composites, both
SiCw/ZK60A and SiC_/ZK60A composites demonstrated
petter strength anll modulus than the B,C/AZ61A. The
highest strength of all the dispersion composites
tested is SiC /ZK60A in the longitudinal direction.
Tre longitudiﬂal tensile modulus in SiCN/ZK60A are
identical, but both are higher than the B,C/AZ61A.
In the transverse direction, better strength and
modulus was attained with SiC_/ZK60A than with
SiC_/IK60A. The best toughnefs value attained with
ai1"the tested composites is demonstrated with
B4C/A161A.

Table [. Longitudinal Tensile Properties
eria . e s uTus(Ms
S5v/o
of~A1,0./ - 17.2 31.3
zEf1k $d=2.5  sd=0.3
(1/2"Plates) (3%) (<1%)
40v/o
Gr/AZ91C - 85.0 26,7
(1/4" Plates) sd=8.0 sd=4.0
{9%) (15%)
(1/2" Plates) - 62.0 17.8
40v/o
Gr/ZE4LA - 40.5 29.6
(1/4"Plates) sd=6.0 sd=2,0
{15%) (7%)
2v/o
B‘C/AZGIA-F 38.5 47.9 8.5
(3° Dta.Extr.) sd=0.7 sd=1.2 sd=0,4

(2%) _ (3%) (5%)

Z0v/o

S1Cp/IK60A-T6 57.9 67.0 10.0

(2" Dia.Extr.) sd=0.5 sd=0.9 sd=0.5
(<1%) (1%) (5%)

Z'bvio

SiC_/IK60A-T6 64.9 83.7 10.1

(2" Bia.Extr.) sd=3.0 sd=3.0  sd=1.0
(5%) (4%) (10%)

*sd=Standard Deviation

Table II. Transverse Tensile Properties

Material 0.2%xVield UTS(ks1] Modulus({Msi)

55v/o0
ot-A1203/ - 33.4 15.1
IE41A sd=0.3 sd=0.4
{1/2"Plate) (<1%) (3%)
40v/o
Gr/
AZ91C - 6.5 4,1
(1/4"Plates) sd=1.5 sd=0,3
(23%) (7%)
(1/2"Plates) - 1.1 3.5
40v/0
Gr/ - 2.7 3.6
ZE41A sd=0.7 sd=1,0
1/4"Plates) (26%) (28%)
v/o
SiC_/IK60A 39,3 49.6 8.5
(2"ex¥r.) sd=2.5  sd=1.l sd=0.4
(5%) (3%) (5%)
20v/o
SiC_/IK60A 50.3 58.9 9.2
(2*exBe.) $d=0.8  sd=7.6 $d=0.6
(23) (13%) (6%)

*sd=Standard Deviation




Table [1l. Fracture Toughness Properties

Material/Qrientation ch
55v/0 o-AT,0,/ZE31A
g+ 13.4  sd=0.3(2%)
T-L 10.3 sd=1.6{16%)
IGv70  Gr/AZ9IC
L-T 2.3 sd=0.1(6%)
T-L 0.08
30v/o  Gr/ItAIA
L-T 1.21 sd=0.1(10%)
T-L 0.22 $d=0,05(23%)
20v/G  B,C/AZBIA
L-R 17.4 $d=0.6(3%)
Z0v/0 SiC_/IKGOA
I-r 16.5 s$d=0.5(4%)
R-L 12.1  sd=0,9(8%)
20v/o S1C_/ZK60A
Por 14,7 sd=0.6(3%)
R-L 12.3  sd=0.5(4%)

*sd= Standard Deviation

FRACTOGRAPHY

Fracture morphologies from the tested tensile
and toughness specimens were similar, The fracture
morphology of w(-Al,0, was typical of a well bonded
fiber reinforced coﬁpasite in the longitudinal
direction (see Figure 11) and fiber splitting was
apparent in the transverse direction. In the
Gr/AZ91C, fracture occured along the fiber surface

and the silicon oxide coating interface (see Figure -

12). Longitudinal fracture surfaces resembled those
indentified in o¢-A1,0,/2E41A. Fiber spliiting was
also characteristic o; Ehe transverse fracture
morphlogy in Gr/AZ91C (see Figure 13). Rare earcth
oxide and matrix debonding was the failure mechanism
observed in Gr/ZE41A (see Figure 14). The
longitudinal fracture surface was planar and
characteristic of a brittle failure. 1In B,C/AZ61A,
fracture typically initiated at a surface 6r
internal flaw. Fracture initiation defects were
often agglomerates of reinforcements or oxides. . The
general fracture morphology was composed of ductile
fracture through the matrix connecting particles
which failed in cleavage (see Figure 15). In
SiC_/ZK60A, micro-void coalescence and decohesion of
par?iculates were the primary failure mechanisms
(see Figure 16). A similar failure mode was
observed in SiC_/ZK60A with whisker pull-outs as an
added fracture Mechanism (see Figure 17).

Figure 11. SEM Micrograph of o«A1203/ZE41A
Longitudinal Fracture Surface,

Figure 12. SEM Micrograph of Gr/AZ91C
Longitudinal Fracture Surface.

Figure 13. SEM Micrograph of Gr/AZ91C
Transverse Fracture Surface,

Figure 14, SEM Micrograph of Gr/ZE41A
Transverse Fracture Surface.




Figure 15, SEM Micrograph of B
Fracture Surface.

4C/AZ61A

Figure 16, SEM Micrograph of SiC_/ZK60A
Fracture Surface. P

Figure 17. SEM Micrograph of Sicw/ZK6OA
Fracture Surface.

51

DISCUSSIUN

Previous studies on the microstructure and
properties of «-Al 03/ZEAIA[9] and Gr/AZ91C[10]
recognized that bogh materials exhibit near
thegetical longitudinal properties. The fracture
morphologies of both xCAIZO /LE41A and Gr/Al91C were
consistent with that of a wg1! bonded composite,

The key common factor between the two composites
appeared to be the interfacial reaction zone. An
ultra-fine grain reaction product, MgAl O4 in the
case of x-Al,0./ZE41A and Mg0 in the cake of
Gr/AZ91C, wag Bresent to provide good interfacial
shear strength, The spinel phase MgAl,0, was the
reaction product from the X-Al1_0, and %o?ten
magnesium. The Mg0 resulted fgoa reaction of the
amorphous Si0 coating material and molten magnesium,
The mean grain diameter within the reaction zone was
less than 500A. Similarly, in 84C/A161A where a
thin film of fine grain reaction product was
present, fracture occured through particle cleavage
rather than interfacial debonding. This may have
accounted for the best toughness result of all the
composites tested in this study.

Transverse strength and toughness in Gr/AZ91C
were extremely low compared to the oAl 0,/ZE41A
and the theoretical ROM prediction., The ;eakest
Tink in the Gr/AZ91C was the unreacted amorphous
silicon oxide coating which failed under tension in
transverse loading, In Gr/ZE41A, the large grain
rare earth oxide interface(>0.lum) formed a thick
brittle reaction layer which accounted for the poor
longitudinal tensile and toughness properties. The
oxide was a reaction product from the amorphous Si0
coating and the rare earths(La and Ce) in molten
ZE41A Mg, A large brittle interface is known to
have detrimental effects on fiber/matrix load
transfer in metal matrix composites[11]. However,
in the transverse direction under constant stress,
the Gr/ZE41A tensile strength and modulus were
comparable to Gr/AZ91C.

The SiC /ZK60A with all its whiskers aligned in
the extrusiol and loading direction allowed load
transfer to the reinforcement as in continuously
fiber reinforced composite. Better strength and
toughness were achieved with SiC /ZK60A than
SiC_/IZK60A in the longitudinal dYfrection and the
revBrsed were true in the transverse direction. TEM
showed no interfacial reaction in both SiC_/ZK60A
nor SiC_/ZK60A. A clean and coherent intefiface
provide™ the interfacial bonding, Fracture paths in
these composites did follow the interface. Whisker
pullouts were evident, Enchancement of the
interfacial bond in SiC_/ZK60A and SiC_/ZK60A could
further improve upon it¥ current propepties.

In 8,C/AZ61A, fracture always initiated from
surface fqaws or oxide inclusions. Fracture origin
was not obvious in Sij/ZK60A or SiC_/ZK60A, ¢Either
the critical flaw size"that initiatef fracture
increases with the reinforcement size or the average
defect diameter in the SiC/Mg was smaller than that
of B4C/A161A. It is conceivable that subject of a
more severe extrusion reduction can decrease averagye
defect size as would be in the case of the two
SiC/Mg.

All the Gr/AZ91C and Gr/ZE41A toughness data was
obtained through Charpy bars sectioned form the 1/2"
plates. Sample tensile specimens taken form 1/2"
plates had significantly lower properties than
specimens from the 1/4" plates. The fracture




morphologies showed variation of structures within
each specimen with noticeable amounts of
delamination, Thus the K data presented here does
not represent that of a ségnd casting as did with
1/4" plate material. Better toughness can be
anticipated with improvements in casting thicker
plates.

Finally, what is presented here is a limited
selection of all the magnesium composites deing
pursued today. The cast continuously fiber
reinforced composites had demonstrated superior
modulus over all the dispersion strengthened
composites and would be ideal for stiffness critical
applications, A more severe interfacial reaction
than the extruded dispersion strengthened materials
was noted for the cast composites. Further studies
are needed to tailor the interfacial reaction.
Better and more consistent strength and toughness
were achieved with the particulate and whisker
reinforced composites than with the continous fiber
reinforced composites. The aforementioned trend
relating properties and microstructure noted in this
study certainly is consistant with that reported
from continuous and discontinuous aluminum
composites. The effects of reinforcement size,
geometry, and dispersements on tensile, modulus, and
toughness are simijar. However, the effects of heat
treatment response to mechanical work on magnesium
composites should also be investigated.

CONCLUSIONS

1. Better strength and toughness were achieved with
u&A1203/ZE41A than Gr/AZ91C Mg and Gr/ZE41A.

2. The ueAlzo /IE41A demonstrated ROM properties
with 1/2 alates whereas the properties in
Gr/AZ91C decreased significantly from the 1/4"
plate to the 1/2" plate.

3. Presence of a thin and fine grain interfacial
reaction layer was.characteristic of a well
bonded composite as was demonstrated in
«>A1203/ZE41A. Gr/AZ91C, and 8,C/AZ61A.

4, A clean, coherent interface in SiC_/ZK60A and
SiC_/IXK60A provided sufficient bonﬂing to
exh¥bi- 7J00d mechanical properties.

5. B,C/AZ61A with the larger particle size
reinforcement demonstrated lower strength and
modulus but better toughness than Sicw/ZK60A and
SiCp/ZKSOA.

6. SIC_/IK60A had better strength and toughness
than Sicp/ZKGOA in the longitudinal direction.

7. Better transverse strength and modulus were
achieved with Sicp/ZKGOA than Sij/ZKGOA.
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